آشنایی با مقررات سیستم های لوله کشی تحت فشار **ASME B31**

ASNT Level III

ASME Authorized Inspector

سيروس يحيى پور

International Welding Engineer (IWE)

ASME B31

سیستم لوله کشی چیست؟ هدف سیستم لوله کشی بطور عمده انتقال مواد است. به "ب" از "الف"

PIPING

لوله کشی چه نیست؟

توجه: لوله های بویلرها ، مخازن تحت فشار , مخازن ذخیره , راکتورها ,هدرها , مبدل های حرارتی , توزیع کننده ها , کلکتورها و هر وسیله ای که برای مقصد دیگری بجز انتقال مواد بکار رود ، لوله کشی محسوب نمی شود و یا جزیی از سیستم لوله کشی نیست.

انتشارات ASME B31

- ■B31.1 Power Piping
- B31.3 Process Piping
- ■B31.4 Transportation Systems for Liquids and Slurries
- B31.5 Refrigeration Piping
- B31.8 Gas Transmission and Distribution Piping Systems
- B13.9 Building Services Piping
- B31.11 Slurry Transportation Piping Systems
- B31.12 Hydrogen Piping and Pipelines

ASME B31 Pressure Piping Codes

انتشارات **B31 ک**ه در اینجا بحث می شود

B 31.1 Power Piping

B 31.3 Process Piping

B31.8 Gas Transmission and Distribution Piping Systems

ASME Piping Codes B31.

Code B31.¹₃ ⁸

ASME مخفف چه چیزهایی است؟

- A American
- S Society of
- M Mechanical
- E Engineers

برخی از عبارتهای کلیدی کد

Shall

الزامات اجبارى

May not

May Can

ممنوعيت

توصيهها يا معافيتها از ممنوعيت

Should

توصيهها

واحدها

Length:	in	=	25,4 mm
	ft	=	304,8 mm
	Yd	=	914,4 mm
Area:	sq in	=	6,4516 cm ²
	sq ft	=	0,0929m ²
Volume:	cu in	=	16,387 cm
	cu ft	=	28,317 l
Force:	lb f	=	4,448 N
Energy:	ft lb	=	1,355818 Nm (=J)
Pressure	psi	=	0,06894757 bar
Temperature	° F	=	32+1,8*Tc

ارتباط انتشارات ASME

ASME Code Scope

2

Countries accepting ASME Code Construction and Requirement Boilers and Pressure Vessels

ASME B 31.1

100.1Scope

Scope: Power and Auxiliary service Piping Systems for: electric generating stations industrial plants heating plants

main aspect: heat transfer
such as: Boiler External Piping

Data Reports and Stamping required over NPS 1/2 within Jurisdictional Limits of Code Section I

and: Non boiler External Piping

No Data Report and Stamping required

ASME Code Committee for Pressure Piping is responsible

this includes:

central and district heating systems

geothermal piping from wellheads

fuel gas and fuel oil piping downstream plant meter set or inside the plant property line

gas and oil systems, air systems, hydraulic fluid systems steam jet cooling systems in the power plant cycle

B 31.1 - 100.1, Scope (cont'd)

but except:

- piping covered by other Sections of the ASME BPV Code
- **Boilers and pressure vessels itself**
- Stream heating piping \leq 15 psig
- hot water heating piping \leq 30 psig
- Plumbing
- hydraulic / pneumatic tool piping downstream the stop valve
- **Federal control installations**
- Nuclear installation piping \rightarrow Code Section III
- **B 31.9 building services piping**
- Fuel gas piping inside industrial buildings ANSI Z 223.1
- pulverized fuel piping \rightarrow NFPA 8503

B 31.1 FIG 100.1.2(B) DRUM TYPE BOILERS

B 31.1 FIG 100.1.2(A) FORCED FLOW STEAM GENERATOR

Section I Boiler

Boiler External Piping: B31.1 ASME S- other PP-Stamp System Requirements in 122.1 Inspection: by Authorized Inspector Pressure Test of entire Boiler after Assembly

ASME B 31.1 Contents

Chapters:

I 100 - Scope and definitions

II 101 - Design

- 101 Conditions and criteria
- 103 Pressure design of piping components
- 105 Selection and limitation of piping components
- 110 Selection and limitation of piping joints
- 119 Expansion, Flexibility, supporting
- 122 Systems
- III 123 Materials
- IV 126 Dimensional requirements
- ► V 127 Fabrication, assembly, erection
- ► VI 136 Examination, inspection and testing

Appendices

Appendices

Mandatory Appendices

Appendix A Table A-1, Carbon Steel STRESS VALUES Table A-2, Low and Intermediate Alloy Steel STRESS VALUES STRESS VALUES Table A-3, Stainless Steels STRESS VALUES Table A-4, Nickel and High Nickel Alloys Table A-5, Cast Iron STRESS VALUES STRESS VALUES Table A-6, Copper and Copper Alloys Table A-7, Aluminum and Aluminum Alloys STRESS VALUES Table A-8, Temperatures 1200°F and Above STRESS VALUES Table A-9, Titanium and Titanium Alloys STRESS VALUES Appendix B Table B-1, Thermal Expansion Data Table B-1 (SI), Thermal Expansion Data Appendix C Table C-1, Moduli of Elasticity for Ferrous Material Table C-1 (SI), Moduli of Elasticity for Ferrous Material Table C-2, Moduli of Elasticity for Nonferrous Material Table C-2 (SI), Moduli of Elasticity for Nonferrous Material Appendix D Table D-1, Flexibility and Stress Intensification Factors Chart D-1, Flexibility Factor k and Stress Intensification Factor I Chart D-2, Correction Factor c Fig. D-1, Branch Connection Dimensions Appendix F Referenced Standards Appendix G Nomenclature Appendix H Preparation of Technical Inquiries Appendix J Quality Control Requirements for Boiler External Piping (BEP)

Appendices

Non mandatory Appendices

- Appendix II Rules for the Design of Safety Valve Installations
- **Appendix III** Rules for Nonmetallic Piping
- Appendix IV Corrosion Control for ASME B31.1 Power Piping Systems
- Appendix VRecommended Practice for Operation,Maintenance, and Modification ofPower Piping Systems
- **Appendix VI** Approval of New Materials
- Appendix VII Procedures for the Design of Restrained Underground Piping

ASME B 31.3 300.1 Scope

Scope: Piping for all fluids within the property lines of facilities for chemicals and petroleum Main aspect: Product transportation

Except: non toxic fluids at 0 ... 15 psig and -20°F ... 366°F

boiler external piping

- boiler proper, pressure vessels
- piping according to B31.1, B 31.4, B31.5, B31.6
 - B 31.8, B 31.11
- Plumbing
 - fire protection systems
- Definitions: 300.2

23

ASME B 31.3 Contents

Chapters

- I Scope and Definitions
- II Design

Conditions and criteria

Pressure design of piping components

Fluid Service Requirements Flexibility and Support Systems

- III Materials
- **IV** Standards for Piping Components
- **V** Fabrication, Assembly, Erection
- VI Examination, Inspection and Testing
- VII Nonmetallic Piping
- VIII Piping for Category M Fluid Service
- IX High Pressure Piping

Appendices

APPENDICES

TABLE 300.4 STATUS OF APPENDICES IN B31.3

Appendix	Title	Status
А	Stress Tables for Metallic Piping and Bolting Materials	Requirements
В	Stress Tables and Allowable Pressure Tables for Nonmetals	Requirements
С	Physical Properties of Piping Materials	Requirements (1)
D	Flexibility and Stress Intensification Factors	Requirements (1)
Е	Reference Standards	Requirements
F	Precautionary Considerations	Guidance (2)
G	Safeguarding	Guidance (2)
н	Sample Calculations for Branch Reinforcement	Guidance
J	Nomenclature	Information
к	Allowable Stress for High Pressure Piping	Requirements (3)
L	Aluminum Alloy Pipe Flanges	Specification (5)
м	Guide to Classifying Fluid Services	Guidance (2)
Q	Quality System Program	Guidance (2)
v	Allowable Variations in Elevated Temperature Service	Guidance (2)
x	Metallic Bellows Expansion Joints	Requirements
z	Preparation of Technical Inquiries	Requirements (4)

NOTES:

- (1) Contains default requirements, to be used unless more directly applicable data are available.
- (2) Contains no requirements but Code user is responsible for considering applicable items.
- (3) Contains requirements applicable only when use of Chapter IX is specified.
- (4) Contains administrative requirements.
- (5) Contains pressure-temperature ratings, materials, dimensions, and markings of forged aluminum alloy flanges.

ASME B 31.3 chapter I

Responsibilities (§ 300)

Owner: Overall responsibilities for Code compliance and establishment of (supplementary) requirements cover Jurisdictional requirements

Designer: Responsible for compliance of engineering design with Code / additional requirements Qualification as per 301.1 Manufacturer: Responsibility for material, components workmanship according to design and code Owner's Inspector: Ensure that inspection, examination, and

requirements are met.

Qualification as per 340.4

26

ASME B 31.3 Fluid Services

Appendix M:

Category **D** fluid service:

Nontoxic, non flammable, not dangerous, designated by owner - design pressure

 \leq 150psig.

Normal fluid service

Category M fluid service:

Toxic fluids, even at single exposure of small quantities, non protected personal, designated by owner

High pressure fluid service:

over Class 2500, designated by owner alternative rules in chapter IX

Severe Cyclic Service:

Piping over 7000 Cycles and significant displacement stress

B 31.3 FIG. M300 GUIDE TO CLASSIFYING FLUID SERVICES

301.1 Qualifications of the Designer

301.1 Qualifications of the Designer

The Designer is the person(s) in charge of the engineering design of a piping system and shall be experienced in the use of this Code.

The qualifications and experience required of the Designer will depend on the complexity and criticality of the system and the nature of the individual's experience. The owner's approval is required if the individual does not meet at least one of the following criteria.

(a) Completion of an engineering degree, requiring four or more years of full-time study, plus a minimum of 5 years experience in the design of related pressure piping

(b) Professional Engineering registration, recognized by the local jurisdiction, and experience in the design of related pressure piping.

(c) Completion of an engineering associates degree, requiring at least 2 years of fulltime study, plus a minimum of 10 years experience in the design of related pressure piping.

(d) Fifteen years experience in the design of related pressure piping. Experience in the design of related pressure piping is satisfied by piping design experience that includes design calculations for pressure, sustained and occasional loads, and piping flexibility.

B 31.3 Chapter II: Design

Design Criteria (302)

Piping Components with Specific Ratings (Table 326.1) Pressure according to the rating at the operating temperature or according to the provisions of B 31.3

Without Specific Rating: Considered as seamless pipe corresponding to the schedule or class

Variations above the ratings or Appendix A Stress Values allowed by: (302.2.4)

33% for no more than 10 hr at any one time, and no more than 100 hr/yr. 20% for no more than 50 hr at any one time, and no more than 500 hr/yr

Subject to the Owner's approval.

B 31.3 Chapter II: Design

301.2: Design Pressure: Most severe conditions expected in service 301.3: Design Temperature **301.4: Ambient Influences to be considered:** cooling effects on pressure (vacuum) - fluid expansion effects atmospheric icing - low ambient temp 301.5: Dynamic Effects: - Impact - external or internal - wind - earth quake - vibration 301.6: Weight Effects: Live, dead, test and cleaning fluid loads (incl. snow & ice) **301.7: Thermal Expansion and Contraction Effects 301.10: Cyclic Effects 301.11: Air Condensatin Effects** 31

B 31.3 Pressure Design of Components

304.1 Straight Pipe Internal Pressure External Pressure (Section VIII-1 UG-28ff) **304.2 Curved Segments of Pipe 304.3 Branch Connections** (Reinforcement Calculation) 304.4 Closures **304.5 Flanges and Blanks 304.6 Reducers (Reference Stds) 304.7 Other Components** listed - Table 326.1 Non listed - calcs or proof test UG-101 **Expansion Joints - App. X**

Table 326.1

Table 326.1: Specifications and Standards (sample)

	ASME Boiler and Pressure Vessel Code
B1.1	Unified Inch Screw Threads
B1.20.1	Pipe Threads, General Purpose (Inch)
B16.1	C.I. Pipe Flanges and Flanged Fittings $-$ 25, 125,
	250 & 800 Classes
816.3	M.I. Thd. Fittings
B16.4	G.I. Thd. Fittings
B16.5	Pipe Flanges & Flanged Fittings
B16.9	Wrought Steel Butt Welding Fittings
816.10	Face-to-Face and End-to-End Dimensions of Valves
B16.11	Forged Steel Fittings, S.W. & Threaded
B16.14	Ferrous Plugs, Bushings & Locknuts with Pipe
	Threads
B16.15	Cast Bronze Threaded Fittings, Classes 125 and 250
B16.20	Metallic Gaskets for Pipe Flanges — Ring Joint,
	Spiral Wound, & Jacketed
B16.21	Non-Metallic Flat Gaskets for Pipe Flanges
B16.22	Wrought Copper & Copper Alloy Solder Joint
	Pressure Fittings
B16.24	Cast Copper Alloy Pipe Flanges & Flanged
	Fittings — Class 150, 300, 400, 600, 900, 1500,
	and 2500

B16.25	Butt Welding Ends
B16.28	Wrought Steel Butt Welding Short Radius Elbows
	and Returns
B16.34	Valves — Flanged, Threaded, and Welding End
B16.42	Ductile Iron Pipe Flanges and Flanged Fittings -
	Classes 150 and 300
B16.47	Large Diameter Steel Flanges
B18.2.2	Square and Hex Nuts (Inch Series)
B18.21.1	Lock Washers (Inch Series)
B31.3	Process Piping
B31.4	Liquid Transportation Systems for Hydrocarbons,
	Liquid Petroleum Gas, Anhydrous Ammonia, and
	Alcohols
B31.8	Gas Transmission & Distribution Piping Systems
B36.10M	Welded and Seamless Wrought Steel Pipe
B36.19M	Stainless Steel Pipe
TDP-1	Recommended Practices for the Prevention of Water
	Damage to Steam Turbines Used for Electric
	Power Generation Fossil Fueled Plants

Appendix E : acceptable editions!

ASME B16.34

Marking Examples

Fo	orged Valve	Group 1.9	Cast Valve Group 1.1
Manufacturer	RVC		RVC
Material	SA-182 F11	I CI.2	A-216 WCB
Heat No.	1234 (to SA	A-182 §16 !)	1234
(Trade Designation	Superfor	rge	Supercast)
Conformity	B16.34		ASME B16.34 SPL
Rating	300		300
Temperature	optional fo	or special an	d intermediate rated valves
Size	NPS 4		NPS 4
Serial No.	555 (Whe	en MTR requi	ired to SA-182)
Identification Plate:	Manufactu	rer`s Name F	RVC
	Class 3	00	300#SPL
Rating @ 100F:	750psi a	at 100F	750psi at 100F
Special Markings: L	imitations fo	or gaskets o	r bolting if applicable
Reference: MSS SP-	-25		

B16.34 Example: Minimum Wall Thickness

Inside Imeter <i>d,</i> in. [Note (1)]	150	300	400	600	900	1500	2500	450
1.00	0.16	0.19	0.19	0.19	0.25	0.28	0.44	0.8
1.12	0.17	0.19	0.19	0.19	0.25	0.31	0.50	0.9
1.25	0.19	0.19	0.19	0.19	0.26	0.34	0.53	1.0
1.37	0.19	0.19	0.20	0.20	0.28	0.38	0.57	1.1
1.50	0.19	0.19	0.22	0.22	0.29	0.39	0.62	1.2
1.87	0.21	0.22	0.23	0.24	0.31	0.44	0.75	1.5
2.00	0.22	0.25	0.25	0.25	0.31	0.46	0.79	1.6
2.25	0.22	0.25	0.26	0.26	0.34	0.50	0.88	1.8
2.50	0.22	0.25	0.28	0.28	0.36	0.56	0.95	2.0
2.75	0.22	0.27	0.29	0.29	0.39	0.62	1.04	2.2
2.87	0.22	0.27	0.30	0.30	0.41	0.63	1.09	2.3
3.00	0.22	0.28	0.31	0.31	0.42	0.66	1.14	2.4
3.50	0.25	0.29	0.34	0.34	0.47	0.75	1.29	2.8
3.62	0.25	0.29	0.35	0.36	0.48	0.75	1.34	2.9
3.87	0.25	0.30	0.36	0.37	0.50	0.81	1.42	3.1
4.00	0.25	0.31	0.38	0.38	0.51	0.83	1.47	3.2
4.37	0.25	0.32	0.39	0.41	0.56	0.91	1.59	3.
4.75	0.26	0.34	0.42	0.43	0.59	0.98	1.72	3.8
5.00	0.28	0.34	0.44	0.44	0.63	1.02	1.81	4.
5.37	0.28	0.36	0.44	0.46	0.66	1.09	1.93	4.3

VALVES — FLANGED, THREADED, AND WELDING END

ASME B16.34-2004

Table 2-1.1Ratings for Group 1.1Materials

A 105 (1)(2)	A 515 Gr.70 (1)	A 696 Gr. C	A 672 Gr. B70 (1)
A 216 GR. WCB (1)	A 516 Gr. 70 (1)(3)	A 350 Gr. LF6 Cl. 1 (4)	A 672 Gr. C70 (1)
A 350 Gr. LF2 (1)	A 537 Cl. 1 (5)	A 350 Gr. LF3 (6)	

NOTES:

 Upon prolonged exposure to temperatures above 425C°, the carbide phase of steel may be converted to graphite. Permissible, but not recommended for prolonged usage above 425°C.

(2) Only killed steel shall be used above 455°C. (3) Not to be used over 455°C. (4) Not to be used over 260°C.

(5) Not to be used over 370°C. (6) Not to be used over 345°C.

Temperature, °C	Working Pressures by Class, bar							
	150	300	600	900	1500	2500	4500	
-29 to 38	19.6	51.1	102.1	153.2	255.3	425.5	765.9	
50	19.2	50.1	100.2	150.4	250.6	417.7	751.9	
100	17.7	46.6	93.2	139.8	233.0	388.3	699.0	
150	15.8	45.1	90.2	135.2	225.4	375.6	676.1	
200	13.8	43.8	87.6	131.4	219.0	365.0	657.0	
250	12.1	41.9	83.9	125.8	209.7	349.5	629.1	
300	10.2	39.8	79.6	119.5	199.1	331.8	597.3	
325	9.3	38.7	77.4	116.1	193.6	322.6	580.7	
350	8.4	37.6	75.1	112.7	187.8	313.0	563.5	
375	7.4	36.4	72.7	109.1	181.8	303.1	545.5	
400	6.5	34.7	69.4	104.2	173.6	289.3	520.8	
425	5.5	28.8	57.5	86.3	143.8	239.7	431.5	
450	4.6	23.0	46.0	69.0	115.0	191.7	345.1	
475	3.7	17.4	34.9	52.3	87.2	145.3	261.5	
500	2.8	11.8	23.5	35.3	58.8	97.9	176.3	
538	1.4	5.9	11.8	17.7	29.5	49.2	88.6	

A – Standard Class
VALVES - FLANGED, THREADED, AND WELDING END

Table 2-1.1 Ratings for Group 1.1 Materials

A 105 (1)(2)	A 515 Gr.70 (1)	A 696 Gr. C	A 672 Gr. B70 (1)							
A 216 GR. WCB (1)	A 516 Gr. 70 (1)(3)	A 350 Gr. LF6 Cl. 1 (4)	A 672 Gr. C70 (1)							
A 350 Gr. LF2 (1)	A 537 Cl. 1 (5)	A 350 Gr. LF3 (6)								

NOTES:

(1) Upon prolonged exposure to temperatures above 425C°, the carbide phase of steel may be converted to graphite. Permissible, but not recommended for prolonged usage above 425°C.

(2) Only killed steel shall be used above 455°C.

(3) Not to be used over 455°C.

(4) Not to be used over 260°C.

(5) Not to be used over 370°C.

(6) Not to be used over 345°C.

B – Special Class

Town or stress			Work	ing Pressures by C	lass, bar		
Temperature, ℃	150	300	600	900	1500	2500	4500
-29 to 38	19.8	51.7	103.4	155.1	258.6	430.9	775.7
50	19.8	51.7	103.4	155.1	258.6	430.9	775.7
100	19.8	51.6	103.3	154.9	258.2	430.3	774.5
150	19.6	51.0	102.1	153.1	255.2	425.3	765.5
200	19.4	50.6	101.1	151.7	252.9	421.4	758.6
250	19.4	50.5	101.1	151.6	252.6	421.1	757.9
300	19.4	50.5	101.1	151.6	252.6	421.1	757.9
325	19.2	50.1	100.2	150.3	250.6	417.6	751.7
350	18.7	48.9	97.8	146.7	244.6	407.6	733.7
375	18.1	47.1	94.2	141.3	235.5	392.5	706.5
400	16.6	43.4	86.8	130.2	217.0	361.7	651.0
425	13.8	36.0	71.9	107.9	179.8	299.6	539.3
450	11.0	28.8	57.5	86.3	143.8	239.6	431.4
475	8.4	21.8	43.6	65.4	109.0	181.6	326.9
500	5.6	14.7	29.4	44.1	73.5	122.4	220.4
538	2.8	7.4	14.8	22.2	36.9	61.6	110.8

B16.5 Pipe Flanged & Flanged Fitting

PRESSURE-TEMPERATURE RATINGS FOR GROUPS 1.1 THROUGH 3.17 MATERIALS

TABLE 2-1.1 RATINGS FOR GROUP 1.1 MATERIALS

Nominal Designation	Forgings	Castings	Plates
C-Si	A 105 (1)	A 216 Gr. WCB (1)	A 515 Gr. 70 (1)
C-Mn-Si	A 350 Gr. LF2 (1)		A 516 Gr. 70 (1)(2) A 537 Cl. 1 (3)
C-Mn-Si-V	A 350 Gr. LF6 Cl. 1 (4)		

NOTES:

(1) Upon prolonged exposure to temperatures above 800°F, the carbide phase of steel may be converted to graphite. Permissible, but not recommended for prolonged use above 800°F.

(2) Not to be used over 850°F. (3) Not to be used over 700°F. (4) Not to be used over 500°F.

WORKING PRESSURES BY CLASSES, psig

Class Temp., °F	150	300	400	600	900	1500	2500
-20 to 100	285	740	990	1480	2220	3705	6170
200	260	675	900	1350	2025	3375	5625
300	230	655	875	1315	1970	3280	5470
400	200	635	845	1270	1900	3170	5280
500	170	600	800	1200	1795	2995	4990
600	140	550	730	1095	1640	2735	4560
650	125	535	715	1075	1610	2685	4475
700	110	535	710	1065	1600	2665	4440
750	95	505	670	1010	1510	2520	4200
800	80	410	550	825	1235	2060	3430
850	65	270	355	535	805	1340	2230
900	50	170	230	345	515	860	1430
950	35	105	140	205	310	515	860
1000	20	50	70	105	155	260	430

304: PRESSURE DESIGN OF COMPONENTS

304.1.2 Straight Pipe Under Internal Pressure

(a) For t < D/6, the internal pressure design thickness shall not be less than that calculated in accordance with either Eq. (3a) or Eq. (3b):

$$t = \frac{PD}{2(SE + Py)} \qquad \text{Eq. (3a)}$$

(b) For $t \ge D/6$, or for P/SE > 0.385, calculations of pressure design thickness for straight pipe requires special consideration of factors such as theory of failure, effects of fatigue, and thermal stress.

$$\mathbf{t}_{\mathrm{m}} = \mathbf{t} + \mathbf{c}$$

- t_m = minimum required thicknes
- t = pressure design thickness
 - = mechanical and corrosion, erosion allowances
 - = internal design gage pressure
- **D** = Outside diameter of pipe
- **SE** = **Stress value incl. Quality factor from Table A**
 - = coefficient from Table 304.1.1

С

Ρ

Y

B 31.3 TABLE A-1 (CONT'D)

BASIC ALLUWABLE STRESSES IN TENSION FOR METALS

Numbers in Parentheses Refer to Notes for Appendix A Tables; Specifications Are ASTM Unless Otherwise Indicated

	Spec.	P- No.			Min. Temp.,	Specifie Strengt		Min. Temp.					
Material	No.	(5)	Grade	Notes	°F (6)	Tensile	Yield	to 100	200	300	400	50 0	60
Stainless Steel (3) (4) Pipes and Tubes (2)				мо, ш.		<u></u>							
18Cr-10Ni-Ti pipe smls > 3/8 in. thick	A 312]											
18Cr-10Ni-Ti pipe	A 376	- 8	TP321	(30)(36)	-325	70	25	16.7	16.7	16.7	16 .7	16.1	15.2
> 3/8 in. thick		J	11 521	00/00	-J2J	70	25	10.7	10.7	10.7	10.7	10.1	15.2
18Cr-8Ni tube	A 269	8	TP304L	(14) (36)	-425	ן							
18Cr-8Ni pipe	A 312	8	TP304L		-425	70	25	16.7	<i>16.7</i>	16.7	15.8	14.8	14.0
Type 304L A 240	A 358	8	304L	(36)	-425								
16Cr-12Ni-2Mo tube	A 269	8	TP316L	(14) (36)	-325]							
16Cr-12Ni-2Mo pipe	A 312	8	TP316L		-325	70	25	16.7	16.7	16.7	15.5	14.4	13.5
Type 316L A 240	A 358	8	316L	(36)	-325								
18Cr−10Ni−Ti pipe smls > 3⁄в in. thick	A 312]			-								
18Cr–10Ni–Ti pipe > ¾s in. thick	A 376	8	TP321	(28)(30)(36)	-325]							
18Cr-10Ni-Ti pipe smls > 3/8 in. thick	A 312	8	TP321H	(30)(36)	-325 -325	- 70	25	16.7	16.7	16.7	16.7	16.1	15.2
18Cr−10Ni−Ti pipe > 3⁄ε in. thick	A 376	8	TP321H										

DOES NOT INCLUDE QUALITY FACTORS

TABLE A-1 (CONT'D) BASIC ALLOWABLE STRESSES IN TENSION FOR METALS¹

Numbers in Parentheses Refer to Notes for Appendix A Tables; Specifications Are ASTM Unless Otherwise Indicated

		P-No. or S-No.			Min Temp		Specifie Strengt		Min.		
Material	Spec. No.	(5)	Grade	Notes	°F (6		Tensile	Yield	Temp. to 100	200	300
Carbon Steel (Con Pipes and Tube											
	A 53	1	6	(57)(59)	ł	_					
	A 106	1	8	(57)	- 1	в]					
	A 333]		_								
	A 334	1	6	(57)	-5	٥L	60	35	20.0	20.0	20.0
	A 369	1	FPB	(57)	-2				20.0	20.0	20.0
	A 381	S-1	¥35			Ã					
•••	API 5L	S-1	6	(57)(59)(77)		в					
	A 139	S-1	с	(86)		A	60	42]			
	A 139	5-1	D	(65)		A	60	46	20.0	20.0	20.0
	API 5L	S-1	X42	(55)(77)		A	60	42	20.0	20.0	20.0
••	A 381	S-1	Y42	•••		A	60	42	20.0	20.0	20.
•••	A 381	S-1	Y48			A	62	48	20.6	19.7	18.7
	API 5L	S-1	X46	(55)(77)		A	63	46	21.0	21.0	21.0
•••	A 381	S-1	Y46			A	63	46	21.0	21.0	21.0
	A 381	S-1	Y50			A	64	50	21.3	20.3	19.3
A 516 Gr. 65	A 671	1	CC65	(57)(67)	1	в	65	35	21.7	21.3	20.7
A 515 Gr. 65	A 671	1	CB65]								
A 515 Gr. 65	A 672	1	B65	- (57)(67)		A]-	65	35	21.7	21.3	20.7
A 516 Gr. 65	A 672	1	C65	(57)(67)		в					

B 31.3 TABLE A-1 (CONT´D)

Nu	mbers in					or Appen		· · · ·	-		e ASTM	Uniess (Otherwise I	ndicated
100	500	600	650	700	750	800	850	900	950	1000	1050	1100	Grade	Spec, No.
									<u>ר</u>			Pines	Carbon S and Tubes ()	Steel (Cont'd)
						AUTION I						T (pes		
						·		-	1				ſв	A 53
						A							в	A 106
						\frown							6	A 333
0.0	18.9	17.3	17.0	16.5	13.0	10.8	8.7	6.5	4.5	2.5	1.6	1.0 -	6	A 334
													FPB	A 369
													Y35	A 381
				NOT USE		THIS								
				NOT USE 6°F PER I		THIS							Y35 B	A 381 API 5L
0		MPERAT	URE (36			THIS							Y35 8	A 381
		MPERAT	URE (36	6°F PER 1	NOTE)								Y35 B	A 381 API 5L A 139
T II			URE (36	6°F PER 1	NOTE)							···· ·	Y35 8 [C D	A 381 API 5L A 139 A 139
T II		MPERAT	URE (36	6°F PER 1	NOTE)			···· ····				···· ·	Y35 B -[D X42	A 381 API 5L A 139 A 139 API 5L
0.6			URE (36	6°F PER 1	NOTE)			 				···· · ····	Y35 B -[D X42	A 381 API 5L A 139 A 139 API 5L
0.6) 	MPERAT	URE (36	6°F PER	NOTE)		 	 					Y35 B (D X42 Y42 Y48	A 381 API 5L A 139 A 139 API 5L A 381 A 381
0.0 7.8 1.0) 	MPERAT	URE (36	6°F PER	NOTE)		 	····					Y35 B C D X42 Y42 Y42 Y48 X46	A 381 API 5L A 139 A 139 API 5L A 381 A 381 A 381
0.0 7.8 1.0	16.9	 16.0	URE (36	6°F PER 1	NOTE)	····	 	····	••••				Y35 B (D X42 Y42 Y48	A 381 API 5L A 139 A 139 API 5L A 381 A 381
0.0 7.8 1.0	16.9	16.0	URE (36	6°F PER 1	NOTE)	····	···· ····		••••••		···· ····	 	Y35 B C D X42 Y42 Y42 Y48 X46 Y46	A 381 API 5L A 139 A 139 API 5L A 381 A 381 A 381 A 381 A 381
0.0 7.8 1.0	16.9	International In	URE (36	6°F PER 1	NOTE)	····	···· ····	····	•••••	···· ····	···· ····	····	Y35 B C D X42 Y42 Y42 Y48 X46	A 381 API 5L A 139 A 139 API 5L A 381 A 381 A 381
0.0 7.8 1.0	16.9 17.4	16.5	URE (36	6°F PER 1	NOTE)	····	···· ····		····		···· ···· ···	···· ··· ···	Y35 B C D X42 Y42 Y42 Y48 X46 Y46	A 381 API 5L A 139 A 139 API 5L A 381 A 381 A 381 A 381 A 381
7.6 1.0	16.9	16.0	URE (36	6°F PER 1	NOTE)	····	···· ····		••••••	···· ····	···· ····	 	Y35 B C D X42 Y42 Y48 X46 Y46 Y50	A 381 API 5L A 139 A 139 API 5L A 381 A 381 A 381 A 381 A 381
7.8 1.0	16.9 17.4	16.5	URE (36	6°F PER 1	NOTE)	····	···· ····		····	···· ····	···· ···· ···	···· ··· ···	Y35 B C D X42 Y42 Y48 X46 Y46 Y50 CC65	A 381 API 5L A 139 A 139 API 5L A 381 A 381 A 381 A 381 A 381 A 381 A 381 A 3671

B 31.3

TABLE 302.3.4

LONGITUDINAL WELD JOINT QUALITY FACTOR, E_{j} ...

No.	Type of	Joint	Type of Seam	Examination	Factor, <i>E_j</i>	
1	Furnace butt weld, continuous weld	A	Straight	As required by listed specification	0.60 [Note (1)]	
2	Electric resistance weld		Straight or spiral	As required by listed specification	0.85 [Note (1)]	
3	Electric fusion weld		- -	· · · · · · · · · · · · · · · · · · ·	- I	
	(a) Single butt weld		Straight or spiral	As required by listed specification or this Code	0.80	
	(with or without filler metal)			Additionally spot radiographed per para. 341.5.1	0.90	
				Additionally 100% radiographed per para. 344.5.1 and Table 341.3.2	1.00	

304.2 Curved and Mitered Segments of Pipe

304.2 Curved and Mitered Segments of Pipe

finished form shall be determined in accordance with Eq. (2) and Eq. (3c):

304.2 Curved and Mitered Segments of Pipe 304.2.1 Pipe Bends. The minimum required thickness t_m of a bend, after bending, in its

$$t = \frac{PD}{2[(SE/I) + PY]}$$

where at the intrados (inside bend radius)

and at the extrados (outside bend radius)

$$I = \frac{4(R_1/D) - 1}{4(R_1/D) - 2}$$

and at the sidewall on the bend centerline radius, I = 1.0.

 R_1 = bend radius of welding elbow or pipe bend Thickness variations from the intrados to the extrados and along the length of the bend shall be gradual. The thickness requirements apply at the mid-span of the bend, y/2, at the intrados, extrados, and bend centerline radius. The minimum thickness at the end tangents shall not be less than the requirements of para. 304.1 for straight pipe (see Fig. 304.2.1).

$$I = \frac{4(R_1/D) + 1}{4(R_1/D) + 2}$$

304.3 Branch Connections

B 31.3 Piping Components

- **305** Pipe (Material and Service Limitations) App. A
- **306** Fittings, Bends and Branch Connections
- **307 Valves and Specialty Components**
- 308 Flanges, Blanks, Gaskets
- 309 Bolting
- 310 Piping Joints General
- 311 Welded Joints
- 312ff Flanged Joints and other joints
- 319 Flexibility and Analysis
- 321 Supporting

319.4 Flexibility Analysis

319.4 Flexibility Analysis

319.4.1 Formal Analysis Not Required.

No formal analysis of adequate flexibility is required for a piping system which:

(a) duplicates, or replaces without significant change, a system operating with a successful service record;

(b) can readily be judged adequate by comparison with previously analyzed systems;

(c) is of uniform size, has no more than two points of fixation, no intermediate restraints, and falls within the limitations of empirical Eq. (16):

where

D = outside diameter of pipe, mm (in.)

$$\frac{Dy}{(L-U)^2} \le K_1$$

y = resultant of total displacement strains, mm (in.), to be absorbed by the piping system

- L = developed length of piping between anchors, m (ft)
- **U** = anchor distance, straight line bet m (ft)
- $K_1 = 208,000 S_A/E_a, (mm/m)^2 = 30 S_A/E_a, (in./ft)^2$

319.4 Flexibility Analysis

where

- SA = allowable displacement stress range per Eq. (I a), MPa (ksi)
- Ea = reference modulus of elasticity al MPa (ksi)

319.4.2 Formal Analysis Requirements

(a) Any piping system which does not meet the criteria in para. 319.4.1 shall be analyzed by a simplified, approximate, or comprehensive method of analysis, as appropriate.

- (b) A simplified or approximate method may be applied only if used within the range of configurations for which its adequacy has been demonstrated.
- (c) Acceptable comprehensive methods of analysis include analytical and chart methods which provide an evaluation of the forces, moments, and stresses caused by displacement strains (see para. 319.2.1).
- (d) Comprehensive analysis shall take into account stress intensification factors for any component other than straight pipe. Credit may be taken for the extra flexibility of such a component.

ASME B 31.3

Chapter III: Materials

```
Listed Materials: (Appendix A shows stress values) are acceptable.
```

Unlisted Material may be used provided it meets the Code

```
323.2.3 Temperature Limits
lower limits: Table A-1 sets absolute limits
Table 323.2.2 - Requirements for Impact
Testing
upper limits: Table A-1 sets limits
Exemptions per 323.2.1
```

Section	n II- C F	iller Metals	نده در AWS	زات پرکنن	شناسایی فل
SFA- 5.1,	5.5: SMAW		Electrode Classifi	cation	
E7018	,	E7018M,	, E	E7016-1H	[zR
E	XXX	Х	Х		XX
Electrode	Strength in KSI	Position • 1= All Position • 2= Flat and horizontal fillets	 0= DCEP d 1= AC or DCEP 2= AC or DCEN 3= AC or DC 4= AC or DC 5= DCEP 6= AC or DCEP 7= AC or DCEP 	d m i i m m m m "penetration"	Chemical Composition of weld Deposit

• 4= Vertical down

شناسایی فلزات پرکننده در Section II- C Filler Metals AWS

Section II- C Filler Metals

شناسایی فلزات پرکننده در ASME Section II- C AWS

F-No الكترودها و مفتولهای پركنندهٔ فولادكربنی و فولادهای آلیاژی QW-432- F- Numbers

F-No.	ASME Specification Steel and Steel Alloys	AWS Classification
1	SFA-5.1	EXX20, EXX22, EXX24, EXX27, EXX28
1	SFA-5.4	EXXX(X)-25, EXXX(X)-26
1	SFA-5.5	EXX20-X, EXX27-X
2	SFA-5.1 & 5.5	EXX12, EXX13, EXX14, EXX19, E(X)XX13-X
3	SFA-5.1 & 5.5	EXX10, EXX11, E(X)XX10-X, E(X)XX11-X
4	SFA-5.1	EXX15, EXX16, EXX18, EXX48
4	SFA-5.4 other than austenitic and duplex	EXXX(X)15, EXXX(X)16, EXXX(X)17
4	SFA-5.5	E(X)XX15-X, E(X)XX16-X, E(X)XX18-X
5	SFA-5.4 (austenitic and duplex)	EXXX(X), EXXX(X)16, EXXX(X)17
6	SFA-5.2	All Classifications
6	SFA-5.9	All Classifications
6	SFA-5.17, SFA-5.18	All Classifications
6	SFA-5.20	All Classifications
6	SFA-5.22, SFA-5.23	All Classifications
6	SFA-5.25, SFA-5.26	All Classifications
6	SFA-5.28, SFA-5.29	All Classifications
6	SFA-5.30	IN Ms-X, IN 5XX, In 3XX(X)
Contin	ued	

QW -440 تركيب شيميايى جوش

■ترکیب شیمیایی فلز جوش براساس QW-404.5 باید در WPS و PQR

QW-422

مشخص شود.

A-Numbers

Classification of Ferrous Weld Metal Analysis for Procedure Qualification

				Analysis, %	[Note (1)]		
A-no.	Type of Weld Deposit	С	Cr	Мо	Ni	Mn	Si
1	Mill Steel	0.20	•••	•••	•••	1.60	1.00
2	Carbon – Molybdenum	0.15	0.50	0.40-0.65	•••	1.60	1.00
3	Carbon (0.4% to 2%) – Molybdenum	0.15	0.40-2.00	0.40-0.65	•••	1.60	1.00
4	Carbon (2% to 6%)- Molybdenum	0.15	2.00-6.00	0.40-1.50	•••	1.60	2.00
5	Carbon (6% to 10.5%)- Molybdenum	0.15	6.00-10.50	0.40-1.50	•••	1.20	2.00
6	Carbon – martensitic	0.15	11.00-15.00	0.70	•••	2.00	1.00
7	Carbon - Ferritic	0.15	11.00-30.00	1.00	•••	1.00	3.00
8	Chromium- nickel	0.15	14.50-3.00	4.00	7.50-15.00	2.50	1.00
9	Chromium- Nickel	0.30	19.00-30.00	6.00	15.00-37.00	2.50	1.00
10	Nickel to 4%	0.15	•••	0.55	0.80-4.00	1.70	1.00
11	Manganese- Molybdenum	0.17		0.25-0.75	0.85	1.25- 2.25	1.00
12	Nickel – Chrome- Molybdonum	0.15	1.50	0.25-0.80	1.25-2.80	0.75- 2.25	1.00

Note:

(1) Single Values shown above are Maximum.

QW/ QB – 422 Ferrous P-Numbers and S-Numbers

Grouping of Base Metals for Qualification

			Minimum Specified		Wel	ding		Bra	azing		
Spec. No.	Type or Grade	UNS No.	Tensile, ksi [Note (1)].	P- No.	Group No.	S- No.	Group No.	P- No.	S- No.	Nominal Composition	Product Form
SA-36	•••	K02600	58	1	1	•••		101		C-Mn-Si	Plate
SA-53	Туре F		48	1	1	•••		101		С	Furnace Welded Pipe
SA-53	Type S, Gr. A	K02504	48	1	1	•••	•••	101	•••	С	Smls. pipe
SA-53	Type S, Gr. A	K02504	48	1	1	•••		101	•••	С	Resistance welded pipe
SA-53	Type S, Gr. B	K03005	60	1	1	•••		101	•••	C-Mn	Resistance welded pipe
SA-53	Type S, Gr. B	K03005	60	1	1			101		C-Mn	Smls. pipe
SA-105		K03504	70	1	2		•••	101		C-Si	Pipeflange
SA-106	Α	K02501	48	1	1	•••		101		C-Si	Smls. pipe
SA-106	В	K03006	60	1	1			101		C-Si	Smls. pipe
SA-106	С	K03501	70	1	2	•••		101		C-Si	Smls. pipe
A-108	1015 CW	G10150	60			1	1		101	С	Bar
A-108	1018 CW	G10180	60			1	1		101	С	Bar
A-108	1020 CW	G10200	60			1	1		101	С	Bar

Section IX Base Material P-Numbers

1	Carbon Steel
3	Up to ½% Cr and up to ½% Mo
4	1 to 2% Cr and up to ½% Mo
5A	2 to 3% Cr, 1% Mo Alloy Steel
5B	5 to 10% Cr, 1% Mo Alloy Steel
5 C	All 5A and 5B Materials heat treated to 85ksi+
6	Martensite Stainless Steel
7	Ferrite Stainless Steel
8	Austenitic Stainless Steel
9	2 to 5% Ni Alloy Steel
10	Mn- V, Cr-V, 9% Ni, High Cr Alloy Steels
11	Low Alloy Steel, Quenched and Tempered to 95ksi+
21	1.2% Mg of Mn Alloy Aluminum
22	1.2% Mn, 2.5% Mg, 0.25% Cu Aluminum
23	1.3% Mg, 0.7% Si, 0.25% Cr Aluminum
25	1.5% Mg, 0.8% Mn, 0.15% Cr Aluminum
31	Copper
32	Admiralty, Naval, Aluminum Brass, Muntz Metal
33	Cu- Si Alloys
34	Cu- Ni Alloys
41	Nickel
51	Titanium
61	Zirconium

ASME Section II Part C SFA-Numbers

- SFA-5.1 Carbon Steel Electrodes for Shielded Metal Arc welding
- SFA-5.2 Carbon and Low Steel Rods for Oxyfuel Gas Welding
- SFA-5.3 Aluminum and Aluminum Alloy Electrodes for Shielded Metal Arc Welding
- SFA-5.4 Stainless Steel Electrodes for. Shielded Metal Arc Welding
- SFA-5.5 Low Alloy Steel Electrodes for Shielded Metal Arc Welding
- SFA-5.6 Covered Copper and Copper Alloy Arc Welding Electrodes
- SFA-5.7 Copper and Copper Alloy Bare Welding Rods and electroes
- SFA-5.8 Filler metal for Brazing and Braze Welding
- SFA-5.9 Bare Stainless Steel Welding Electrodes and Rods
- SFA-5.10 Bare Aluminum and Aluminum Alloy Welding Electrodes and Rods
- SFA-5.11 Nickel and Nickel Alloy Welding Electrodes for Shielded Metal Arc Welding
- SFA-5.12 Tungsten and Tungsten Alloy Electrodes. For Arc Welding and Cutting
- SFA-5.13 Solid Surfacing Welding Rods and Electrodes
- SFA-5.14 Nickel and Nickel Alloy Bare Welding Electrodes and Rods
- SFA-5.15 Welding Electrodes and Rods for Case Iron
- SFA-5.16 Titanium and Titanium Alloy Welding Rods and Electrodes
- SFA-5.17 Carbon Steel Electrodes and Fluxes for Submerged Arc Welding
- SFA-5.18 Carbon Steel Filler metals for Gas Shielded Arc Welding
- SFA-5.20 Carbon Steel Electrodes for Flux Cored Arc Welding
- SFA-5.21 Composite Surfacing Welding Rods and Electrodes
- SFA-5.22 Stainless Steel Electrodes for Flux Cored Arc Welding and Stainless Steel Flux Cored Rods for Gas Tungsten Arc Weling
- SFA-5.23 Low Alloy Steel Electrodes and Fluxes for Submerged Arc Welding

P-No. ليست خلاصه

Base Metal	Welding	Brazing
Steel and Steel alloys	P-No. 1 through P-No. 11 inch. P-No. 5A, 5B, and 5C	P-No. 101 through P-No. 103
Aluminum and aluminum – base alloys	P-No. 21 through P- No.25	P-No. 104 and P-No. 105
Copper and copper- base alloys	P-No. 31 through P-No. 35	P-No. 107 and P-No. 108
Nickel and nickel- base alloys	P-No. 41 through P-No. 47	P-No. 110 through P-No. 112
Titanium and titanium- base alloys	P-No. 51 through P-No. 53	P-No. 115
Zirconium and zirconium – base alloys	P-No. 61 through P-No. 62	P-No. 117

■اگر فلز پایهای با شماره شناسایی UNS برای آن P-No. و .Group-No در نظر گرفته شده باشد. هر فلز پایهای با هر شماره ASME بشرطی که .UNS-No آنها یکی باشد، همان .P-No و Group-No را خواهند داشت. به عنوان مثال SB-163 با UNS No8800 دارای P-No. 45 است. بنابراین تمام فلزات با UNS No8800 نظير SB-407، SB-408، SB-407 و غيره همان -P No. 45 را دارند.

QW-400.2 S- Numbers (Non- Mandatory)

- S-No. آن دسته از فلزاتی که صرفا توسط ASM B 31. تأیید شدهاند و یا آن موادی که توسط Code Cases پذیرفته شدهاند اما در لیست فلزات مجاز ASME Sec II قرار ندارد، طراحی شده است.
- این مواد تحت .S-No یا .S-No به همراه .Group- No هایی که شبیه -P No.ها هستند طبقهبندی شدهاند. اما استفاده از .S-No اجباری نیست.
- روشهای جوشکاری که با یک P-No. یا P-No به همراه Group-No. تأیید شده باشند برای تمام S-No. ها یا S-No.ها به همراه Group-No. تأیید هستند.
- روشهای جوشکاری که با یک S-No. یا S-No. به همراه Group-No. تأیید میشوند. برای فلزات با P-No. مورد تأیید نیستند.
- روش های جوشکاری که از فلزاتی استفاده میکنند که دارای P-No. یا S-No.

- موادی که تحت استاندارد ASME تولید میشوند نیز باید تحت -S
 موادی که تحت استاندارد Group-No. در نظر گرفته شوند. به عنوان No.
 P-No. 8 یا Group-No.1 دارای Group-No.1 و Group-No. 1
 است بنابراین فولاد 304 A240 Type می دارای Group-No. 1
- جهت آزمایش تأیید مهارت جوشکاران در صور تیکه مهارت جوشکاری
 جهت آزمایش تأیید مهارت جوشکاران در صور تیکه مهارت جوشکاری بر اساس .No. یا P-No یا P-No به همراه .S-No
 تمام .S-No یا S-No به همراه .Group-No های مشابه تأیید خواهد شد. عکس این موضوع نیز صادق است.

QW-430 F- Numbers

- شمارههای .F-No در جدول QW-432 با این هدف طراحی شدهاند، که تعداد PQR ها و WPQ ها را به حداقل برسانند.
- مبنای اساسی .F-No عبارت است از قابلیت استفاده Usability الکترودها و فلزات پرکننده
- طبقهبندیهای F-No. به معنای جایگزینی فلزات پرکننده و الکترود با یکدیگر بدون در نظر گرفتن تطابق ترکیب فلز پایه و فلز پرکننده، خواص مکانیکی، ساختار متالوژیکی، عملیات حرارتی پس از جوشکاری و ملاحظات بهرهبرداری نیست.
- QW-432.1 Steel and Steel Alloys
- QW-432.2 Aluminum and Aluminum base Alloys
- QW-432.3 Copper and Copper- Base Alloys
- QW-432.4 Nickel and Nickel- Base Alloys
- QW-432.5 Titanium and Titanium Alloys
- QW-432.6 Zirconium and Zirconium Alloys
- QW-432.7 Hard-Facing Weld Metal Overlay

A-516 (90) Gr 60

ASTM Material

B 31.3 TABLE A-1

BASIC ALLOWABLE STRESSES IN TENSION FOR METALS¹

Numbers in Parentheses Refer to Notes for Appendix A Tables; Specifications Are ASTM Unless Otherwise Indicated

		P-No. or			Min.	Specified Min. Strength, ksi		Min.		
Material	Spec. No.	S-No. (5)	Grade	Notes	Тетр., °F (6)	Tensile	Yield	Temp. to 100	200	300
arbon Steel (Con Pipes and Tubes										
	A 53	1	8	(57)(59)	-					
	A 106	1	8	(57)	⊢ в]					
	A 333]			-						
	A 334 🛓	1	6	(57)	-50 -	60	35	20.0	20.0	20.
	A 369	1	FPB	(57)	-20					
	A 381	S-1	¥35		A					
-	API 5L	S-1	6	(57)(59)(77)	в					
	A 139	S-1	с	(86)	A	60	42]			
	A 139	5-1	D	(Bb)	A	60	46	20.0	20.0	20.
	API 5L	S-1	X42	(55)(77)	A	60	42	20.0	20.0	20.
	A 381	S-1	Y42		A	60	42	20.0	20.0	20.
••	A 381	S-1	Y48		A	62	48	20.6	19.7	18.
	API 5L	S-1	X46	(55)(77)		63	46	21.0	21.0	21.
• •	A 381	S-1	Y46		Α	63	46	21.0	21.0	21.
	A 381	\$-1	Y50		A	64	50	21.3	20.3	19.
516 Gr. 65	A 671	1	CC65	(57)(67)	в	65	35	21.7	21.3	20.
515 Gr. 65	A 671	1	CB65]							
515 Gr. 65	A 672	1	B65	- (57)(67)	^ }	65	35	21.7	21.3	20.
516 Gr. 65	A 672	1	C65	(57)(67)	в					

B 31.3 TABLE A-1 (CONT'D)

		t	Basic Allo	wable St	ress <i>S</i> , k	si (1), at	Metal T	emperat	ure, °F (7)				
400	500	600	650	700	750	800	850	900	950	1000	1050	1100	Grade	Spec. No
									-			D1		Steel (Cont'
							RE USE A EE NOTE					Pipes	and Tubes (2) (Com'a)
						TURE - S			J				Гв	A 53
						$\mathbf{\lambda}$							в	A 106
							`						6	A 333
0.0	18.9	17.3	17.0	16.5	13.0	10.8	8.7	6.5	4.5	2.5	1.6	1.0 -	6	A 334
													FPB	A 369
													¥35	A 381
				NOT USE		THIS								A 381
				NOT USE		THIS							¥35 8	A 381 API 5
						THIS							¥35	A 381 API 5 A 139
		MPERAT				nhis							Y35 B	
× 11		MPERAT	URE (360	5°F PER 1	NOTE)			···· ···	···· ····	···· ···	 	···· -	Y35 8 [C D	A 381 API 5 A 139 A 139 API 5
0.8) • · · ·	MPERAT	URE (366	6°F PER 1	NOTE)			···· ····	•••• •••• ••••				Y35 8 D X42 Y42	A 381 API 5 A 139 A 139 API 5 A 381
:0. <u>0</u> !!		MPERAT	URE (366	5°F PER 1	NOTE)			····	 		 	···· -	Y35 8 [D X42	A 381 API 5 A 139 A 139
20.0 ¹¹	те 16.9	MPERAT	URE (360	5°F PER 1	NOTE)	····		···· ····	····				Y35 8 D X42 Y42	A 381 API 5 A 139 A 139 API 5 A 381
0.0 .7.8 21.0	16.9	 16.0	TURE (360	5°F PER 1	NOTE)	···· ····	···· ····	···· ····	••••••				Y35 8 C D X42 Y42 Y48	A 381 API 5 A 139 A 139 API 5 A 381 A 381
0.d 7.8 1.0	те 16.9	MPERAT	URE (360	5°F PER 1	NOTE)	····		···· ····	•••••	···· ···			Y35 8 C D X42 Y42 Y48 X46	A 381 API 5 A 139 A 139 API 5 A 381 A 381 A 381
0.ð 7.8 1.0	16.9	 16.0	TURE (360	5°F PER 1	NOTE)	···· ····	···· ····	· · · · · · · · · · · ·	•••••	···· ···			Y35 8 C D X42 Y42 Y48 X46	A 381 API 5 A 139 A 139 API 5 A 381 A 381 API 5 A 381
7.6 7.6 1.0	16.9 17.4	I6.5	TURE (360	5°F PER 1	NOTE)	···· ····	···· ····	····	· · · · · · · · · ·	···· ···· ···	····	···· ···· ···	Y35 B C D X42 Y42 Y48 X46 Y46 Y50	A 381 API 5 A 139 A 139 API 5 A 381 A 381 A 381 A 381
20.0 7.6 21.0	16.9	IG.0	TURE (36)	5°F PER 1	NOTE)	···· ····	···· ····	····	••••••	···· ····			Y35 B C D X42 Y42 Y48 X46 Y46 Y50 CC65	A 381 API 5 A 139 A 139 A 381 A 381 A 381 A 381 A 381 A 381 A 381 A 381 A 381 A 381
20.0 17.8 21.0 18.4 20.0 20.0	16.9 17.4	I6.5	TURE (360	5°F PER 1	NOTE)	···· ····	···· ····	····	· · · · · · · · · ·	···· ···· ···	····	···· ···· ···	Y35 B C D X42 Y42 Y48 X46 Y46 Y50	A 381 API 5 A 139 A 139 API 5 A 381 A 381 API 5 A 381

67

Table 323.2.2 Low Temperature

TABLE 323.2.2

REQUIREMENTS FOR LOW TEMPERATURE TOUGHNESS TESTS FOR METALS

These Toughness Test Requirements Are in Addition to Tests Required by the Material Specification

Type of Material	Co Design Minimum Temperature at or 32	Column B Design Minimum Temperature Below Min. Temp. in Table A-1 or Fig. 323.2.2A	
1 Gray cast iron	A-1 No additional requirements		B-1 No additional requirements
2 Malleable and ductile cast iron; carbon steel per Note (1)	A-2 No additional requirements	B-2 Materials designated in Box 2 shall not be used.	
	(a) Base Metal	(b) Weld Metal and Heat Affected Zone (HAZ) [Note (2)]	
3 Other carbon steels; low and intermediate alloy steels; high alloy ferritic steels; duptex stainless steels	A-3 (a) No additional requirements	 A-3 (b) Weld metal deposits shall be impact tested per para. 323.3 if design min. temp. < -29°C (-20°F), except as provided in Notes (3) and (5), and except as follows: for materials listed for Curves C and D of Fig. 323.2.2A, where corresponding welding consumables are qualified by impact testing at the design minimum temperature or lower in accordance with the applicable AWS specification, additional testing is not required. 	B-3 Except as provided in Notes (3) and (5), heat treat base metal per applicable ASTM specification listed in para. 323.3.2; then impact test base metal, weld deposits, and HAZ per para. 323.3 [See Note (2)]. When materials are used at design min. temp. below the assigned curve as permitted by Notes (2) and (3) of Fig. 323.2.2A, weld deposits and HAZ shall be impact tested [See Note (2)].
4 Austenitic stainless steels	 A-4 (a) If: (1) carbon content by analysis > 0.1%; or (2) material is not in solution heat treated condition; then, impact test per para. 323.3 for design min. temp. < -29°C (-20°F) except as provided in Notes (3) and (6) 	A-4 (b) Weld metal deposits shall be impact tested per para. 323.3 if design min. temp. < −29°C (→20°F) except as provided in para. 323.2.2 and in Notes (3) and (6)	B-4 Base metal and weld metal deposits shall be impact tested per para. 323.3. See Notes (2), (3), and (6).

Fig. 323.2.2A Min. Temp. Without Impact Testing

Fig. 323.2.2B MDMT Reduction

FIG. 323.2.2B REDUCTION IN MINIMUM DESIGN METAL TEMPERATURE WITHOUT IMPACT TESTING

B 31.3

Fig. 323.2.2B MDMT Reduction

GENERAL NOTES:

(a) The Stress Ratio is defined as the maximum of the following:

(1) nominal pressure stress (based on minimum pipe wall thickness less allowances) divided by S at the design minimum temperature;

(2) for piping components with pressure ratings, the pressure for the condition under consideration divided by the pressure rating at the design minimum termperature;

(3) combined longitudinal stress due to pressure, dead weight, and displacement strain (stress intensification factors are not included in this calculation) divided by S at the design minimum temperature. In calculating longitudinal stress, the forces and moments in the piping system shall be calculated using nominal dimensions and the stresses shall be calculated using section properties based on the nominal dimensions less corrosion, erosion, and mechanical allowances.

(b) Loadings coincident with the metal temperature under consideration shall be used in determining the Stress Ratio as defined above.

B 31.3

Chapter V: Fabrication, Assembly, Erection

328: Welding \Rightarrow ASME Code Section IX for test requirements Procedures and performance may be qualified by others Manufacturer is responsible.

327.3: Welding Materials \Rightarrow ASME Code Section IX

327.4: Preparation for Welding, Cleaning, Misalignment Tolerances

327.5: Welding Requirements

Butt welds, fillet welds, welded branch connections, attachment welds

Welding preheat (330)

Heat treatment (331, Table 331.1.1- Exemption Footnotes)

332: Bending and Forming
B 31.3 CHAPTER V

328.2 Welding Qualifications

328.2.1 Qualification Requirements

(a) Qualification of the welding procedures to used and of the performance of welders and weld operators shall conform to the requirements of the BPV Code, Section IX except as modified herein.

(b) Where the base metal will not withstand the 180 deg. guided bend required by Section IX, a qualify welded specimen is required to undergo the same deg of bending as the base metal, within 5 deg.

تاييد كيفيت روش Qualification of a Welding Procedure

QW – 250 ff Samples

متغیرهای WPS

Paragr. QW 402.1 Brief Groove Design

Nonessential Variable

No new PQR, just WPS Revision

QW -403.11 P-No. qualified

Essential Variable

SA-516 Gr. 60 P-No. 1 SA-240-360 L P-No.8

New PQR, new WPS

QW 403.5 Group number qualified

SA-516 Gr. 60 P-No. 1 Gr. 1 SA-516 Gr. 70 P-No. 1 Gr. 2 Supplementary Essential Variable

Construction Code:

- Impact testing: new PQR, new WPS
- No Impact test: do not consider

یک WPS می تواند توسط چند PQR تا یید گردد.

One WPS may be supported by more PQR'S

Qualification of a welder: Selection of welders Selection of welding variables, i.e. Distinguishing of positions Distinguishing of pipe diameters Distinguishing of used F-Numbers of filler metals Etc. مراحل تأیید مهارت انتخاب جوشکار درنظر گرفتن متغیرهای جوشکاری مشخص کردن وضعیت مشخص کردن قطر لوله مشخص F-Number الکترود یا مفتول و ...

ASME Code Section IX QW-322 تاریخ انقضاء و تایید مجدد جوشکاران اگر جوشکاری در طول 6 ماه با فرآیندی که بر اساس آن مهارت وی تایید شده بود جوشکاری نکند، گواهینامه وی اعتبار خود را از دست خواهد داد.

- اگر جوشکار در طول 6 ماه با روشهای دیگری از جوش دستی یا نیمه اتوماتیک کارکرده باشد بنحوی که مهارت وی در فرآیند قبلی حفظ شده باشد گواهینامه وی می تواند مجددا تایید گردد.
- در صورتیکه به هر دلیلی مهارت جوشکاری در یک فرآیند جوشکاری
 مورد شک واقع شود گواهینامه وی را میتوان در آن فرآیند لغو کرد.
 اما صلاحیت وی در مورد دیگر فرآیندها، همچنان معتبر خواهد بود.

B 31.3 Chapter V: Fabrication, Assembly, Erection

B 31.3 FIG. 328.5.2B

B 31.3 TABLE 330.1.1 PREHEAT TEMPERATURES

Base Weld Metal Metal Anaiysis P-No. A-No.		B ===	Nominal Wall		Specified Min. Tensile Strength,		Min. Temperature				
		Base Metal			Base N	/letal	Required		Recommended		
[Note (1)]	[Note (2)]	Group	mm	in.	MPa	ksi	°C	۴F	°C	°F	
1	1	Carbon steel	< 25	< 1	<u>≤</u> 490	<71			10	50	
			≥ 25	\geq 1	All	All			79	175	
			All	All	> 490	> 71		• • •	79	175	
3	2, 11	Alloy steels,	<13	< 1/2	≤ 490	≤71			10	50	
		Cr ≤ ¼2%	\geq 13	$\geq \frac{1}{2}$	All	All			79	175	
			All	All	> 490	>71			79	175	
4	3	Alloy steels $\frac{1}{2} \ll Cr \leq 2\%$	All	All	All	All	149	300			
5	4, 5	Alloy steels, $2^{1/4}\% \leq Cr \leq 10\%$	All	All	All	АШ	177	350			
6	6	High alloy steels martensitic	All	All	All	AII			1493	3003	
7	7	High alloy steels ferritic	All	All	All	All			10	50	
8	8, 9	High alloy steels austenitic	АШ	All	All	All			10	50	
QA QR	10	Nickel alloy steels	A11	АШ	All	All			93	200	

B 31.3 TABLE 331.1.1 REQUIREMENTS FOR HEAT TREATMENT

Base Weld Metal Metal Analysis P-Number A-Number [Note (1)] [Note (2)]			Non	ninal	Specifie Ten:		N	letal	Н	olding Time		
	Analysis	Base Metal	Wall Thickness		Strength, Base Metal		10.000 Million (1997)	oerature ange	Nominal Wall [Note (3)]		Min. Time,	Brinell Hardness, [Note (4)]
		Group	mm	in.	MPa	ksi	۰C	۴F	min/mm	hr/in.	hr	Max.
1	1	Carbon steel	≤19	≤¾	A!I	All	None	None				
			> 19	> ¾	All	All	593-649	1100-1200	2.4	1	1	* * *
3	2, 11	Alloy steels,	≤19	≤ ¾	≤ 4 90	≤71	None	None				
		Cr ≤ 1/2%	> 19	> 3/4	All	All	593-718	1100-1325	2.4	1	1	225
			Ali	All	> 490	>71	593-718	1100-1325	2.4	1	1	225
4	3	Alloy steels,	≤13	≤ ¹ /2	≤490	≤71	None	None				
		1/2% < Cr < 2%	>13	> 1/2	All	All	704-746	1300-1375	2.4	1	2	225
			All	All	> 490	>71	704-746	1300-1375	2.4	1	2	225
5	4, 5	Alloy steels, $(2\frac{1}{4}\% \le Cr \le 10\%)$										
	10	<3%Cr, and <0.15%C, and	<13	<1/2	All	All	None	None			* * *	
		> 3%Cr, or > 0.15%C, or	>13	> 1/2	All	All	704-760	1300-1400	2.4	1	2	241
6	6	High alloy steels martensitic	All	All	All	All	732-788	1350-1450	2.4	1	2	241
		A 240 Gr. 429	All	All	Alł	AH	621-663	1150-1225	2.4	1	2	241
7	7	High alloy steels ferritic	Ali	All	All	All	None	None	68)		+ + +	
8	8, 9	High alloy steels austenitic	All	All	All	All	None	None			• • •	
9A, 9B	10	Nickel alloy steels	≤ 19	≤ ³ 4	All	All	None	None				
	10000		>19	> 34	All	All	593-635	1100-1175	1.2	1/2	1	

ASME B 31.3 chapter I

مسئوليت كارفرما طراح ، نصاب و بازرس (300) Responsibilities

Owner: Overall responsibilities for Code compliance and establishment of (supplementary) requirements cover Jurisdictional requirements

Designer: Responsible for compliance of engineering design with Code / additional requirements Qualification as per 301.1 Manufacturer: Responsibility for material, components workmanship according to design and code Owner's Inspector: Ensure that inspection, examination, and testing requirements are metal Qualification as per 340.4

B 31.3 Chapter VI: Inspection, Examination, Testing

340 Inspection: Owner's Responsibility

341 Examination: Manufacturer or Owner visual and nondestructive examination

341.3 Examination Requirements and Acceptance Criteria (Table)

342 Examination Personnel

344 Types of Examination

```
345 Leak Test (after PWHT and NDE)
to ensure leak tightness
Hydrostatic (345.4 @ 1.5 x MAWP x S<sub>test</sub>/S<sub>design</sub>)
or Pneumatic testing (345.5)
```

346 Records design records, examination procedures and personnel qualifications 5 years.

B 31.3 FIG. 341.3.2 TYPICAL WELD IMPERFECTIONS

B 31.3 TABLE 341.3.2

ACCEPTANCE CRITERIA FOR WELDS

		N	Iormal FI	uid Servi	ce				Severe	Cyclic (Conditio	ons			C	ategory	D Fluid	Service	
	Met	hods		Types (of Weld		£	Met	hods			Types	of Weld		Method		Types of Weld		
Kind of Imperfection	Visual	Radiography	Girth and Miter Groove	Longitudinal Groove [Note (2)]	Fillet [Note (3)]	Branch Connection [Note (4)]	Visual	Radiography	Magnetic Particle	Liquid Penetrant	Girth and Miter Groove	Longitudinal Groove [Note (2)]	Fillet [Note (3)]	Branch Connection [Note (4)]	Visual	Girth and Miter Groove	Longitudinal Groove [Note (2)]	Fillet (Note (3))	Branch Connection [Note (4)]
Grack	×	×	A	A	А	А	×	×	×	×	A	A	A	А	×	A	A	Α	A
ack of fusion	\times	×	A	A	А	A	×	×	- vauć	- 693	A	A	A	A	×Ţ	1000	FA	NA	A
ncomplete penetration	×	×	в	Α	NA	в	×	×			A	A	NA	A	×	С	ĺ <u>ĺ</u> ₄	NA	в
nternal porosity		×	Ε	E	NA	E		×	****	232	D	D	NA	D	aa .		- 222	154	
lag inclusion, tungsten inclusion, or elongated indication	•••	×	G	G	NA	G		×		- 222	F	F	NA	F		775. -	111	1971	
Indercutting	×		н		н	н	×	×			A	A	А	A	×	1	A	н	н
urface porosity or exposed slag inclusion [Note (5)]	×		A	A	A	A	×	eres)	***	***	A	A	A	A	×	A	A	Α	A
iurface finish	***	Server	1.22	3.322	4440	www.	×	120	855	124	J	J	J	J	122	202	1 144	1292	
oncave root surface (suck-up)	×	×	к	к	NA	к	×	×	414	1970	к	к	NA	к	×	к	к	NA	к
einforcement or internal	×	• • •	L	L	L	L	×		eo (L	ι	ũ	L	×	м	м	м	м

B 31.3 Criterion Value Notes for Table 341.3.2

•	Criterion		1.002		
ymbol	Measure	Acceptable Value Limits (Note (5)]		
A	Extent of imperfection	Zero (no evident imperfection)			
в	Depth of incomplete penetration Cumulative length of incomplete penetration	\leq 1 mm (¹ / ₃ z in.) and \leq 0.2 $\overline{7}_{w}$ \leq 38 mm (1.5 in.) in any 152 mm (6 in.) weld	length		
с	Depth of lack of fusion and incomplete penetration Cumulative length of lack of fusion and incomplete penetration [Note (7)]	${\leq}0.2{\cal T}_w$ ${\leq}38$ mm (1.5 in.) in any 152 mm (6 in.) weld	length		
D	Size and distribution of internal porosity	See BPV Code, Section VIII, Division 1, Appen	See BPV Code, Section VIII, Division 1, Appendix 4		
E	Size and distribution of internal porosity	For $\overline{7}_{\mu\nu} \leq 6 \text{ mm} (\frac{3}{4} \text{ in.})$, limit is same as D For $\overline{7}_{\mu\nu} > 6 \text{ mm} (\frac{3}{4} \text{ in.})$, limit is $1.5 \times D$			
F	Slag inclusion, tungsten inclusion, or elongated indication Individual length Individual width Cumulative length	$\leq T_w/3$ $\leq 2.5 \text{ mm} (3/32 \text{ in.}) \text{ and } \leq T_w/3$ $\leq T_w \text{ in any } 12T_w \text{ weld length}$			
G	Slag inclusion, tungsten inclusion, or elongated indication Individual length Individual width Cumulative length	$\leq 2\overline{T}_{w}$ $\leq 3 \text{ mm} (\frac{1}{2} \text{ in.}) \text{ and } \leq \overline{T}_{w}/2$ $\leq 4\overline{T}_{w}$ in any 152 mm (6 in.) weld length			
н	Depth of undercut	$\leq 1 \text{ mm}$ (1/32 in.) and $\leq T_w/4$			
1	Depth of undercut	≤ 1.5 mm (1/16 in.) and $\leq [\overline{T}_{\mu}/4 \text{ or } 1 \text{ mm } (1/2)]$	az in.)]		
J	Surface roughness	\leq 500 min. Ra per ASME B46.1			
к	Depth of root surface concavity	Total joint thickness, incl. weld reinf., $\geq T_{\rm sc}$			
C.	Height of reinforcement or internal protrusion [Note (8)] in any plane through the weld shall be within limits of the applicable height value in the tabulation at right, except as provided in Note (9). Weld metal shall merge smoothly into the component surfaces.	$ For \overline{T_{\mu\nu}}, mm (in.) \leq 6 (1/4) > 6 (1/4), \leq 13 (1/2) > 13 (1/2), \leq 25 (1) > 25 (1) $	$\begin{array}{l} \text{Height, mm (in.)} \\ \leq 1.5 \ (^{1}/_{16}) \\ \leq 3 \ (^{1}/_{6}) \\ \leq 4 \ (^{5}/_{32}) \\ \leq 5 \ (^{3}/_{36}) \end{array}$		
м	Height of reinforcement or internal protrusion [Note (8)] as described in L. Note (9) does not apply.	Limit is twice the value applicable for L abov	•		

B 31.3 TABLE 341.3.2 (CONT'D)

NOTES:

(1) Criteria given are for required examination. More stringent criteria may be specified in the engineering design. See also paras. 341.5 and 341.5.3.

(2) Longitudinal groove weld includes straight and spiral seam. Criteria are not intended to apply to welds made in accordance with a standard listed in Table A-1 or Table 32b.1.

(3) Fillet weld includes socket and seal welds, and attachment welds for slip-on flanges, branch reinforcement, and supports. (4) Branch connection weld includes pressure containing welds in branches and fabricated laps.

(5) These imperfections are evaluated only for welds $\leq 5 \text{ mm} (3/16 \text{ in.})$ in nominal thickness.

(b) Where two limiting values are separated by "and," the lesser of the values determines acceptance. Where two sets of values are separated by "or," the larger value is acceptable. T_w is the nominal wall thickness

(7) Tightly butted unfused root faces are unacceptable.

(8) For groove welds, height is the lesser of the measurements made from the surfaces of the adjacent components; both reinforcement and internal protrusion are permitted in a weld. For fillet welds, height is measured from the theoretical throat, Fig. 328.5.2A; internal protrusion does not apply.

(9) For welds in aluminum alloy only, internal protrusion shall not exceed the following values:

(a) for thickness $\leq 2 \text{ mm} (5/64 \text{ in.})$: 1.5 mm (1/16 in.);

(b) for thickness > 2 mm and \leq 6 mm (1/4 in.): 2.5 mm (3/32 in.).

For external reinforcement and for greater thicknesses, see the tabulation for Symbol L.

of the thinner of two components joined by a butt weld.

341.4 Extent of Required Examination

341.4 Extent of Required Examination

341.4.1 Examination Normally Required.

Piping in Normal Fluid Service shall be examined to the extent specified herein or to any greater extent specified in the engineering design. Acceptance criteria (...)para. 341.3.2 and in Table 341.3.2, for Normal Fluid Service unless otherwise specified.

(a) Visual Examination. At least the following in accordance with para. 344.2:

(I) sufficient materials and components, selected at random, to satisfy the examiner that they conform to specifications and are free from defects;

(2) at least 5% of fabrication. For welds, each welder's and welding operator's work shall be represented.

(3) 100% of fabrication for longitudinal welds, except those in components made in accordance with a listed specification. See para 341.5.1(a) for examination of longitudinal welds required to have a joint factor Ej of 0.90.

(4) random examination of the assembly of threaded, bolted, and other joints to satisfy the examiner that they conform to the applicable requirements of para. 335. When pneumatic testing is to be performed, all threaded, bolted, and other mechanical joints shall be examined.

341.4 Extent of Required Examination

(5) random examination during erection of piping, including checking of alignment, supports, and cold spring;

(6) examination of erected piping for evidence of defects that would require repair or replacement, and for other evident deviations from the intent of the design.

(b) Other Examination

(1) Not less than 5% of circumferential butt and miter groove welds shall be examined fully by <u>random radiography</u> in accordance with para. 344.5 or by random ultrasonic examination in accordance with para. 344.6. The welds to be examined shall be selected to ensure that the work product of <u>each welder</u> or welding operator doing the production welding is included. They shall also be selected to maximize coverage of intersections with longitudinal joints.(..) In-process examination in acc. with para. 344.7 may be substituted for all or part of the RT or UT, if specified in the engineering design or authorized by the Inspector.(..)

(c) Certifications and Records. The examiner shall be assured, by examination of certifications, records, and other evidence, that the materials and components are of the specified grades and that they have received required heat treatment, examination, and testing. The examiner shall provide the Inspector with a certification that all the quality control requirements of the Code and of the engineering design have been carried out.

B 31.3

TABLE 302.3.4LONGITUDINAL WELD JOINT QUALITY FACTOR, E_j

No.	Type of	Joint	Type of Seam	Examination	Factor, <i>E_j</i>
1	Furnace butt weld, continuous weld	A	Straight	As required by listed specification	0.60 [Note (1)]
2	Electric resistance weld		Straight or spiral	As required by listed specification	0.85 [Note (1)]
3	Electric fusion weld		-	· · · · · · · · · · · · · · · · · · ·	- -
	(a) Single butt weld		Straight o r spiral	As required by listed specification or this Code	0.80
	(with or without filler metal)			Additionally spot radiographed per para. 341.5.1	0.90
				Additionally 100% radiographed per para. 344.5.1 and Table 341.3.2	1.00

B 31.3 Chapter VI: Scope of NDE

Fluid Service	Long. Joint	Girth Joint	Branch conn.
Category D	VT	VT	VT
341.4.2	344.2	344.2	344.2
Normal	100% VT	5% VT	5% VT
341.4.1	RT depd on Eff	5% RT	
Category M	100% VT	100% VT	100% VT
M341	RT depd on Eff	20% RT	RT for butt welds
Severe Cyclic	100% VT	100% RT	100% MT/PT,
Service-341.4.3	RT depd on Eff		RT for butt welds

In addition all examination specified in the Engineering Design shall be required. For Details please refer to B31.3 Chapter VI

NDE Personnel and Procedures

342 EXAMINATION PERSONNEL

342.1 Personnel Qualification and Certification Examiners shall have training and experience commensurate with the needs of the specified examinations. The <u>employer</u> shall <u>certify</u> records of the examiner employed, showing dates and results of personnel qualifications, and shall maintain them and make then available to the Inspector.

343 EXAMINATION PROCEDURES

Any examination shall be performed in accordance with a <u>written procedure</u> that conforms to one of the methods specified in para. 344, including special methods (see para. 344.1.2). Procedures shall be written a required in the BPV Code, Section V, Article 1, T-150. The employer shall certify records of the examination procedures employed, showing dates and results o procedure qualifications, and shall maintain them available to the Inspector.

344.7 In-Process Examination

344.7 In-Process Examination

344.7.1 Definition. In-process examination comprises examination of the following, as applicable:

- (a) joint preparation and cleanliness;
- (b) preheating;
- (c) fit-up, joint clearance, and internal alignment prior to joining;
- (d) variables specified by the joining procedure, in cluding filler material; and:
- (l) (for welding) position and electrode;
- (2) (for brazing) position, flux, brazing tempera ture, proper wetting, and capillary action;

(e) (for welding) condition of the root pass afte r cleaning - external and, where accessible, internal aided by liquid penetrant or magnetic particle examination when specified in the engineering design;

- (f) (for welding) slag removal and weld condition between passes; and
- (g) appearance of the finished joint.

345.4 Hydrostatic Leak Test

345.4 Hydrostatic Leak Test

345.4.1 Test Fluid. The fluid shall be water unless there is the possibility of damage due to freezing or to adverse effects of water on the piping or the process. In that case another suitable nontoxic liquid may be used. If the liquid is flammable, its flash point shall be at least 49°C (120°F), and consideration shall be given to the test environment.

345.4.2 Test Pressure. Except as provided in para. 345.4.3, the hydrostatic test pressure at any point in a metallic piping system shall be as follows:

(a) not less than $1 \frac{1}{2}$ times the design pressure;

(b) for design temperature above the test temperature, the minimum test pressure shall be calculated by Eq. (24), except that the value of S_T/S shall not exceed 6.5:

where P_T = minimum test gage pressure P = internal design gage pressure S_T = stress value at test temperature S = stress value at design temperature (see Table A-1)

$$P_T = \frac{1.5 \ PS_T}{S}$$

345.9 Alternative Leak Test

345.9 Alternative Leak Test

The following procedures and leak test method may be used only under the conditions stated in para. 345.1 (c).

345.9.1 Examination of Welds. Welds, including those used in the manufacture of welded pipe and fittings, which have not been subjected to hydrostatic or pneumatic leak tests in accordance with this Code, shall be examined as follows.

(a) Circumferential, longitudinal, and spiral groove welds shall be 100% radiographed in accordance with para. 344.5 or 100% ultrasonically examined in accordance with para. 344.6.

(b) All welds, including structural attachment welds, not covered in (a) above, shall be examined using the liquid penetrant method (para. 344.4) or, for magnetic materials, the magnetic particle method (para. 344.3).

(c) if the test pressure as defined above would produce a nominal pressure stress or longitudinal stress in excess of the yield strength at test temperature, the test pressure may be reduced to the maximum pressure that will not exceed the yield strength at test temperature. [See paras. 302.3:2(e) and (f).]

For metallic bellows expansion joints, see Appendix X, para. X302.2.3(a).

ASME B 31.3 Chapter IX

High pressure piping, Alternative Rules. Additional responsibilities:

- owner shall provide all necessary information
- written design summary from the designer

Restrictions

- no nonmetallic piping
- no nonmetallic lined piping
- no provisions for Category M service

Alternative Design Rules in Chapter IX apply only as a whole, not in part.

ASME B 31.8 Gas Transmission and BOD.1 Scope Distribution Systems

Scope: up to the outlet of the customer's meter set assembly Main aspect: Long Distance Transportation

(incl. pipelines, compressor stations, metering stations, gas mains)

Except :

pressure vessels

temperatures below -20 F or above 450 F

vent piping (atm. pressure)

piping within property lines of processing plants

wellhead assemblies

heat exchangers

liquid petroleum piping (B 31.4)

liquid slurry, liquefied natural gas

carbon dioxide transportation piping systems

Definitions 803

ASME B 31.8 Contents

Chapter : General Provisions and Definitions Materials and Equipment

II Welding

Ι

- III Piping Systems Components and Fabrication Details
- **IV** Design, Inspection and Testing
- **V** Operation and Maintenance Procedures
- **VI Corrosion control**
- **VII** Miscellaneous
- VIII Offshore Gas Transmission

Appendixes

Index

Pipe Line Classifications

ASME B 31.8 841 Basic Design Factor

TABLE 841.1 BASIC DESIGN FA	
Location Class	Design Factor F
Location Class 1, Division 1	0.80
Location Class 1, Division 2	0.72
Location Class 2	0.60
Location Class 3	0.50
Location Class 4	0.40

ASME B 31.8 Design Factors

TABLE 841.114B

DESIGN FACTORS FOR STEEL PIPE CONSTRUCTION

		Loc	ation Class			
	1					
Facility	Div. 1	Div. 2	2	3	4	
Pipelines, mains, and service lines [see para. 840.2(b)]	0.80	0.72	0.60	0.50	0.40	
Crossings of roads, railroads without casing:						
(a) Private roads	0.80	0.72	0.60	0.50	0.40	
(b) Unimproved public roads	0.60	0.60	0.60	0.50	0.4	
(c) Roads, highways, or public streets, with hard surface and railroads	0.60	0.60	0.50	0.50	0.4	
Crossings of roads, railroads with casing:						
(a) Private roads	0.80	0.72	0.60	0.50	0.4	
(b) Unimproved public roads	0.72	0.72	0.60	0.50	0.4	
(c) Roads, highways, or public streets, with hard surface and railroads	0.72	0.72	0.60	0.50	0.4	
Parallel encroachment of pipelines and mains on roads and railroads:						
(a) Private roads	0.80	0.72	0.60	0.50	0.4	
(b) Unimproved public roads	0.80	0.72	0.60	0.50	0.4	
(c) Roads, highways, or public streets, with hard surface and railroads	0.60	0.60	0.60	0.50	0.4	
Fabricated assemblies (see para. 841.121)	0.60	0.60	0.60	0.50	0.4	
Pipelines on bridges (see para. 841.122)	0.60	0.60	0.60	0.50	0.4	
Compressor station piping	0.50	0.50	0.50	0.50	0.4	
Near concentration of people in Location Classes 1 and 2 [See para, 840.3(b)]	0.50	0.50	0.50	0.50	Ó.4	

ASME B 31.8 Long Joint Factors

			ABLE 841.11 Inal Joint	5A FACTOR <i>E</i>		
Spec. No.	Pip	e Class	E Factor	Spec. No.	Pipe Class	E Factor
ASTM A 53 ASTM A 106	Seamless Electric Resistance Furnace Butt Weld Seamless	Welded ed — Continuous Weld	1.00 1.00 0.60 1.00	ASTM A 671 ASTM A 672	Electric Fusion Welded Classes 13, 23, 33, 43, 53 Classes 12, 22, 32, 42, 52 Electric Fusion Welded	0.80 1.00
ASTM A 134 ASTM A 135 ASTM A 139 ASTM A 211	Electric Fusion Arc Electric Resistance Electric Fusion Wel Spiral Welded Steel	Welded ded	0.80 1.00 0.80 0.80	API 5L	Classes 13, 23, 33, 43, 53 Classes 12, 22, 32, 42, 52 Seamless Electric Resistance Welded	0.80 1.00 1.00 1.00
ASTM A 333 ASTM A 381	M A 333 Seamless Electric Resistance Welded		1.00 1.00 1.00		Electric Flash Welded Submerged Arc Welded Furnace Butt Welded	1.00 1.00 0.60
		TEMPERATURE	E 841.110 DERATIN STEEL PI	G FACTOR 7	-	
		Temperature, *F	Temp	erature Derati Factor 7	ıg	
		250 or less 300 350		1.000 0.967 0.933		
		400 450		0.900 0.867		

ASME B 31.8 Pressure Test

1	2	3	4	5	
Location	Permissible	Pressure Tes	Maximum Allowable Operating Pressure,		
Class	Test Fluid	Minimum	Maximum	the Lesser of	
1 Division 1	Water	1.25 $ imes$ m.o.p.	None	t.p. ÷ 1.25	
1	Water	1.1 $ imes$ m.o.p.	None	t.p. ÷ 1.1	
Division 2	Air	1.1 $ imes$ m.o.p.	1.1 imes d.p.	or d.p.	
	Gas	1.1 imes m.o.p.	1.1 $ imes$ d.p.		
2	Water	1.25 imes m.o.p.	None	t.p. + 1.25	
	Air	1.25 \times m.o.p.	1.25 imes d.p.	or d.p.	
3 & 4	Water	1.40 \times m.c.p.	None or d.p.	t.p. ÷ 1.40	
[Note (1)]		•		or d.p.	

d.p. – design pressure

t.p. — test pressure

ASME B 31.8 Pressure Test Hoop Stress

TABLE 841.33 MAXIMUM HOOP STRESS PERMISSIBLE DURING TEST

Class	Location,
% of	Specified

Minimum Yield Strength

Test Medium	2	3	4
Air	75	50	40
Gas	30	30	30